Challenges and strategies of architecture and sustainability in cement production: a cross-country comparison

Document Type : Original Article

Authors

1 Ph.D. Candidate, Department of Art and Architecture, UAE Branch, Islamic Azad University, Dubai, United Arab Emirates

2 Associated Professor, Department of Art and Architecture, Tehran-Center Branch, Islamic Azad University, Tehran, Iran

3 Associated Professor, Department of Architecture, Tehran-North Branch, Islamic Azad University, Tehran, Iran

Abstract

The global cement industry is facing increasing scrutiny due to its environmental impacts and resource consumption. This study compares sustainability practices in Italian, German and Iranian cement industries. It focuses on waste management, resource efficiency and environmental effects during cement production. The aim of this research is to identify the differences in sustainable practices between Italian, German and Iranian cement industries and to investigate the factors that create these differences. What is the sustainability of Iran's cement industry compared to other countries? The current type of research is comparative and this study analyzes the Italian and German cement industries using data up to 2021. It examines aspects such as cement production, waste management, alternative materials and fuels. The limited availability of data limits the assessment of Iran's industry to a preliminary analysis. Germany excels in sustainability with proactive waste management, resource efficiency and reduced environmental impact, particularly through the use of recycled solid fuel. Conversely, Italy faces challenges in waste management, significant disposal of landfill waste and slow progress in adopting alternative materials and fuels. Italy and Germany have made significant progress, while Iran relies on older production methods. Addressing these disparities is critical to Iran's alignment with global sustainability efforts. Reassessing waste management, improving resource efficiency and meeting sustainability standards are vital in reducing the environmental impact of the cement industry.

Keywords


Ali, M.B., Saidur, R., Hossain, M.S., 2020. A review on
emission analysis in cement industries. Renewable
and Sustainable Energy Reviews, 15, 2252–2261.
DOI: 10.1016/j.rser.2020.02.014
Ammenberg J., Baas L., Eklund M., Feiz R., Helgstrand
A., Marshall R., 2015. Improving the CO2 performance
of cement, part III: The relevance of
industrial symbiosis and how to measure its impact.
J. Clean. Prod., 98, 145–155. DOI: 10.1016/j.
jclepro.2014.01.086
Armstrong, T., 2022. An overview of global cement
sector trends, XXX Technical Congress FICEM-APCAC,
Lima, Peru, 10th Edition.
Asadi, S., Hassan, M.M., Kevern, J.T., Rupnow, T.D.,
2021. Development of Photocatalytic Pervious
Concrete Pavement for Air and Storm Water Improvements.
TRR Journal, 2290, 1, 161–167. DOI:
10.3141/2290-21
Barbudo, A., de Brito, J., Evangelista, L., Bravo, M.,
Agrela, F., 2022. Influence of water-reducing
admixtures on the mechanical performance of
recycled concrete. J. Clean. Prod. 59, 93–98. DOI:
10.1016/j.jclepro.2022.06.022
Barker, D.J., Turner, S.A., Napier-Moore, P.A.,Clark, M.,
Davison, J.E., 2017. CO2 Capture in the Cement Industry.
Energy Procedia, 1, 87–94.DOI: 10.1016/j.
egypro.2017.01.014
Benhelal, E., Zahedi, G., Shamsaei, E., Bahadori, A.,
2022. Global strategies and potentials to curb
Blankendaal, T., Schuur, P., Voordijk, H., 2014. Reducing
the environmental impact of concrete
and asphalt: a scenario approach. J. Clean.
Prod., 66, 27–36. http://dx.doi.org/10.1016/j.jclepro.
2022.10.012
Bogas, J.A., de Brito, J., Figueiredo, J.M., 2015. Mechanical
characterization of concrete produced
with recycled lightweight expanded clay aggregate
concrete. J. Clean. Prod., 89, 187-195. http://
dx.doi.org/10.1016/j.jclepro.2014.11.015
Bosoaga, A., Masek, O., Oakey, J.E., 2017. CO2
Capture technologies for cement industry. Energy
Procedia,1, 133–140.DOI:10.1016/j.egypro.
2017.01.020 Bravo, M., de Brito, J., 2021. Concrete made with used
tyre aggregate: durability-related performance.
J. Clean. Prod., 25, 42–50. doi:10.1016/j.jclepro.
2020.11.066
Brunke, J. C., Blesl, M., 2014. Energy conservation
measures for the German cement industry and
their ability to compensate for rising energy-related
production costs. J. Clean. Prod., 82, 94– 111.
http://dx.doi.org/10.1016/j.jclepro.2014.06.074
Cembureau, 2015. The future of European recycling
policy and the circular economy. How can the cement
industry contribute to EU recycling targets ?
http://www.cembureau.be/sites/default/files/documents/
2015-03-
24_CEMBUREAU_FinalPublication_Co-processing.
pdf (last accessed 27.04.15)
Cembureau, 2022a. The role of cement in 2050 Low
Carbon Economy. http://lowcarboneconomy.
cembureau.eu/uploads/Modules/Documents/
cembureau-brochure.pdf (last accessed 18.12.14).
Cembureau, 2022b. Activity Report 2022. http://
www.cembureau.be / activity - reports (last accessed
18.12.14).
Cembureau, 2022c. The cement industry is exposed
to carbon leakage regardless of the assessment
method used and the relevant product level.
Cembureau, 2021. Cements for a low-carbon Europe.
A review of the diverse solutions applied by the
European cement industry through clinker substitution
to reducing the carbon footprint of cement
and concrete in
Europe.http://www.cembureau.eu/sites/default/files/
documents/Cement%20for%20low carbon%20
Europe%20through%20clinker%20substitution.pdf
(last accessed 18.12.14).
Cembureau, 2019. Activity Report 2019. http://www.
cembureau.be / activity - reports (last accessed
18.12.14).
Cembureau, 2017. Activity Report 2017. http://www.
cembureau.be / activity - reports (last accessed
18.12.14).
Chen, C., Habert, G., Bouzidi, Y., Jullien, A., 2019. Environmental
impact of cement production: detail of
the different processes and cement plant variability
evaluation. J. Clean. Prod., 18, 478–485. DOI:
10.1016/j.jclepro.2017.12.014
Chen, W., Hon., J., Xu, C., 2015. Pollutants generated
by cement production in China, their impacts,
and the potential for environmental improvement,
J. Clean. Prod., 103, 61–69. http://dx.doi.
org/10.1016/j.jclepro.2014.04.048
Coelho, A., de Brito, J., 2022. Economic viability
analysis of a construction and demolition waste
recycling plant in Portugal - part I: location, materials,
technology and economic analysis. J. Clean.
Prod., 39, 338–352. http://dx.doi.org/10.1016/j.
jclepro.2021.08.024
Croezen, H., Korteland, M., 2019. Technological developments
in Europe, A long-term view of CO2
efficient manufacturing in the European region,
Delft, CE Delft, June 2019. http://curia.europa.
eu/juris/documents.jsf?num=C-196/13, (last accessed
18.12.14).
Čuček, L., Klemeš, J. J., Kravanja, Z., 2021. A Review
of Footprint analysis tools for monitoring impacts
on sustainability. J. Clean. Prod., 34, 9–20.
DOI:10.1016/j.jclepro.2021.02.036
De Benedetto, L., Klemeš, J. J., 2017. The Environmental
Performance Strategy Map: an integrated
LCA approach to support the strategic decision-
making process. J. Clean. Prod., 17, 900–906.
DOI:10.1016/j.jclepro.2017.02.012
httpwww.britannica.com/EBchecked/topic/101833/
cement(last accessed 18.12.14).
European Commission, 2022. Best Available Techniques
(BAT) Reference Document for the
Production of Cement, Lime and Magnesium Oxide.
http://eippcb.jrc.ec.europa.eu/reference/BREF/
CLM_30042022_DEF.pdf (last accessed 18.12.14).
European Commission, 2021. A stronger European Industry
for Growth and Economic Recovery. Communication
from the Commission to the European
Parliament, the Council, the European economic
and social committee and the committee of the
regions. COM (212)582, 10 October 2021.
European Commission, 2018. Directive 2018/98/EC of
the European Parliament and of the Council of 19
November 2018 on waste and repealing certain
Directives. OJEU 22.11.2018, L 312/3. Feiz, R., Ammenberg, J., Baas, L., Eklund, M., Helgstrand,
A., Marshall R., 2015a. Improving the CO2
performance of cement, part I: utilizing life-cycle
assessment and key performance indicators to
assess development within the cement industry. J.
Clean. Prod., 98, 272–281.
Feiz, R., Ammenber, J., Baas, L., Eklund, M., Helgstrand,
A., Marshall, R., 2015b. Improving the CO2 Performance
of cement, part II: framework for assessing
CO2 improvement measures in the cement industry.
J. Clean. Prod., 98, 282–291. http://dx.doi.org
10.1016/j.jclepro.2014.01.103
Gao, T., Shen, L., Shen, M., Chen, F., Liu, L., Gao, L., 2015.
Analysis on differences of carbon dioxide emission
from cement production and their major determinants.
J. Clean. Prod., 103, 160–170. http://dx.doi.
org /10.1016/j.jclepro.2014.11.026
García-Gusano, D., Garraín, D., Herrera, I., Cabal, H.,
Lechon, Y., 2015. Life Cycle Assessment of applying
CO2 post-combustion capture to the Spanish
cement production. J. Clean. Prod., 104, 328–338.
DOI: 10.1016/j.jclepro.2022.11.056
Habert, G., D’Espinose De Lacaillerie, J. B., Roussel, N.,
2020. An environmental evaluation of geopolymer
based concrete production: Reviewing current
research trends. J. Clean. Prod., 19, 1229–1238.
DOI:10.1016/j.jclepro.2020.03.012
Habert, G., Billard, C., Rossi, P., Chen, C., Roussel, N.,
2019. Cement production technology improvement
compared to factor 4 objectives. Cem.
Concr. Res., 40, 820– 826.DOI:10.1016/j.cemconres.
2017.09.031
Hendriks, C.A., Worrell, E., Price, L., Martin, N., Ozawa
Meida, L., De Jager, D., Reimer, P., 1998. Emission
reduction of greenhouse gases from the cement
industry. Proceedings of the Fourth International
Conference on Greenhouse Gas Control Technologies,
Interlaken, Switzerland, 939–944.
Huntzinger, D. N., Eatmon, T.D., 2017. A life-cycle assessment
of Portland cement manufacturing:
comparing the traditional process with alternative
technologies. J. Clean. Prod., 17, 668–675.
DOI:10.1016/j.jclepro.2018.04.007
IEA/WBCSD, 2017. Cement technology Roadmap:
Carbon emissions reduction up to 2050.http://
www.iea.org/publications/freepublications/publication/
Cement.pdf (last accessed 18.12.14).
International Energy Agency, 1999. The Reduction
of Greenhouse Gas Emissions from the Cement
Industry. IEA, Paris.
IPCC, 2014. Social, Economic, and Ethical Concepts
and Methods. In: Climate Change 2014: Mitigation
of Climate Change. Contribution of Working
Group III to the Fifth Assessment
Report of the Intergovernmental Panel on Climate
Change [Edenhofer, O., Pichs-Madruga, R., Sokona,
Y., Farahani, E., Kadner, S., Seyboth, K., Adler,
A., Baum, I., Brunner, S., Eickemeier, P., Kriemann,
B., Savolainen, J., Schlömer, S., von Stechow, C.,
Zwickel, T., Minx, J.C. (eds.)]. Cambridge University
Press, Cambridge, United Kingdom and New
York, NY, USA, 3, 207–282.
http://www.isprambiente.gov.it/files/pubblicazioni/
rapporti/rapporto-rifiuti-urbani-edizione2022/
Rapporto_rifiuti_urbani_edizione_2022.pdf (last
accessed 18.12.14).
Jamieson, E., McLellan, B., Van Riessen, A., Nikraz,
H., 2015. Comparison of embodied energies of
Ordinary Portland Cement with Bayer-derived
geopolymer products. J. Clean. Prod., 99, 112–118.
DOI:10.1016/j.jclepro.2015.03.008
Kaddatz, K.T., Rasul, M.G., Rahman, A., 2021. Alternative
Fuels for Use in Cement Kilns: Process Impact
Modelling. Paper presented to the 5th BSME International
Conference on Thermal Engineering,
Dhaka, Bangladesh, 21st–23rdDecember.
Kirk-Othmer, 2004. Encyclopedia of Chemical Technology.
Cement, 5, 163–193, 5th Edition.
Li, C., Nie Z., Cui, S., Gong, X., Wang, Z., The life cycle
inventory study of cement manufacture in
China. J. Clean. Prod., 72, 204–211. http://dx.doi.
org/10.1016/j.jclepro.2014.02.048
Lothenbach, B., Scrivener, K., Hooton, R.D., 2020.
Supplementary cementitious materials. Cem.
Concr. Res. 41, 217-229. DOI:10.1016/j.cemconres.
2019.12.001
McLellan, B. C., Williams, R.P., Lay, J., van Riessen, A.,
Corder, G.D., 2020. Costs and carbon emissions
for geopolymer pastes in comparison to ordinary
portland cement. J. Clean. Prod., 19, 1080–1090.
DOI:10.1016/j.jclepro.2020.02.010
Mokrzycki, E., Uliasz- Bocheńczyk, A., 2003. Alternative
fuels for the cement industry. Appl. Energy, 74,
95–100.DOI:10.1016/S0306-2619(02)00135-6 Moya, J.A., Pardo, N., Mercier, A., 2020. The potential
for improvements in energy efficiency and CO2
emissions in the EU27 cement industry and the relationship
with the capital budgeting decision criteria.
J. Clean. Prod., 98, 282–291. DOI:10.1016/j.
jclepro.2020.03.003
Naranjo, M., Brownlow D.T., Garza A., 2020. CO2 Capture
and Sequestration in the Cement
Notarnicola, L., Proto, M., 1983a. Alcune considerazioni
sull’industria del cemento in Italia e sul
consumo di energia. Rivista di Merceologia. 22, IV,
279–307.
Notarnicola, L., Proto, M., 1983b. Il consumo di energia
nell’industria del rame. Rivista di Merceologia,
22, (2), 95–126.
Preston, F., 2021. A Global Redesign? Shaping the Circular
Economy, Energy, Environment and
Proto, M., Supino, S., Malandrino, M., 2021. The key
role of cement industry in fostering sustainability,
in: Ioppolo, G., Environment and Energy. Franco
Angeli, Milano, I, 100–111.
Proto, M., Supino, S., 2010. Le dinamiche evolutive dei
consumi energetici nell’industria del vetro in Italia.
In: Proceedings of XIX Congresso Nazionale di
Merceologia, Sassari 27–29 Settembre, 634–647.
Proto, M., D’Ermo, V., 2010. Le dinamiche dell’intensità
energetica nell’industria italiana. In:
Proceedings of XIX Congresso Nazionale di Merceologia
La sfida per il terzo millennio: tecnologia,
innovazione, qualità e ambiente. Sassari-Alghero,
Università degli Studi di Sassari, 27–29 Settembre,
613–624.
Proto, M., 1998a. Un’analisi della qualità ambientale
nei processi produttivi del rame - Nota 1 - La
produzione di rame primario. In: Qualità verso il
2010. Contributi delle scienze merceologiche. University
of Verona, Italy, 1–3 Ottobre, III, 167–173.
Proto, M., 1998b. Un’analisi della qualità ambientale
nei processi produttivi del rame - Nota 2 - Il recupero
dei sottoprodotti. In: Qualità verso il 2010.
Contributi delle scienze merceologiche. University
of Verona, Italy, 1–3 Ottobre, III, 175–181.
Proto, M., 1997. Il rame: un’analisi dei processi
produttivi e del ciclo di vita. In: Il rame: aspetti
economici, ambientali e biologici. University of
Salerno, Italy, 27-28 Novembre, 8–20.
Proto, M., 1990. Le innovazioni tecnologiche e i consumi
di energia nell’industria italiana del vetro
negli anni 1978-1988. Dimensione, 11, (4), 51–55.
Sathaye, J., Lucon, O., Rahman, A., 2020. Renewable
energy in the context of sustainable development.
In: Renewable Energy Sources and Climate Change
Mitigation. Special Report of the Intergovernmental
Panel on Climate Change, Chapter 9, 707–790.
Strazza, C., Del Borghi, A., Gallo, M., Del Borghi, M.,
2020. Resource productivity enhancement as
means for promoting cleaner production: analysis
of co-incineration in cement plants through a life
cycle approach. J. Clean. Prod. 19, 1615–1621.
DOI: 10.1016/j.jclepro.2020.05.014
Supino, S., 1999. Gestione dei rifiuti da costruzione e
demolizione. Opportunità e prospettive, Ambiente
Risorse Salute XVIII, (2), 22–24.
Taylor, M., Tam, C., Gielen, D., 2016. Energy Efficiency
and CO2 Emissions from the Global Cement
Industry. In: Energy Efficiency and CO2 Emission
Reduction Potentials and Policies in the Cement
Industry. IEA, Paris, 4–5 September.
Taylor, H.F.W., 1997. Cement Chemistry, Thomas Telford
Publishing, London.
Van den Heede, P., De Belie, N., 2021. Environmental
impact and life cycle assessment (LCA) of
traditional and ‘green’ concretes: Literature
review and theoretical calculations. Cem. Concr.
Compos. 34, (4), 431–442.DOI:10.1016/j.cemconcomp.
2021.01.004
Vargas, J., Halog, A., 2015. Effective carbon
emission reductions from using upgraded
fly ash in the cement industry.
J. Clean. Prod., 103, 948–959. http://
dx.doi.org/10.1016/j.jclepro.2015.04.136
Wang, Y., Zhu, Q., Geng, Y., 2022. Trajectory and
driving factors for GHG emissions in the Chinese
cement industry. J Clean. Prod., 53, 252–260.
DOI:10.1016/j.jclepro.2022.04.001
VDZ, 2021a. Environmental Data of the German
Cement Industry. http://www.vdzonline.de/
fileadmin/gruppen/vdz/3LiteraturRecherche/Umweltdaten/
Umweltdaten_2021_DE_G B.pdf (last
accessed 14.01.15). VDZ, 2021b. Activity Report 2 0 1 7 - 2 0 2 1 .
http://www.vdzonline.de/fileadmin/gruppen/
vdz/3LiteraturRecherche/TaeB09-
12/EN/VDZ_Activity_Report_09-12.pdf (last accessed
18.12.14).
WBCSD, 2021a. The Cement Sustainability Initiative.
http://csiprogress2021.org/CSI_ProgressReport_
FullReport.pdf(last accessed 18.12.14).
18.12.14).
WBCSD, 2017. The cement sustainability initiative:
Cement industry Energy and CO2 performance.
18.12.14).
Worrell, E., Price, L., Martin, N., Hendriks, C., Meida,
L. O., 2011. Carbon Dioxide Emissions from the
Global Cement Industry. In Annu. Rev. Energy and
the Environ., 26, 303–29.
Yang, K.H., Jung, Y.B., Cho, M.S., Tae, S.H., 2015. Effect
of supplementary cementitious materials on
reduction of CO2 emissions from concrete. J Clean.
Prod., 103, 774–783. http://dx.doi.org/10.1016/j.
jclepro.2014.03.018
Yu, R., Shui, Z., 2014. Efficient reuse of the recycled construction
waste cementitious materials. J Clean.
Prod., 78, 202–207. http://dx.doi.org/10.1016/j.
jclepro.2014.05.003